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Abstract 

Manufacturing plays an increasingly important role in determining the competitiveness 

of the firm. However, corporate strategy is often formulated with little regard for how these 

decisions affect operations within the manufacturing system. Detailed models provide a neces- 

sary link between manufacturing performance and the functional policies followed by the firm, 

so that the strengths of the manufacturing system can be consistently reflected in strategic 

decisions. 

This paper presents a scheduling model that relates the strategic decisions that determine 

the type of work that must ultimately be processed by the manufacturing system with the 

detailed decisions that determine how this work should be scheduled. The model accounts for 
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varying processing time, delay penalty, and revenue characteristics among the jobs available 

for processing by a single facility, with jobs partitioned in multiple classes such that a setup 

is incurred each time two jobs of different classes are processed in succession. Given limited 

processing capacity, the objective is to simultaneously determine the subset of jobs to accept for 

processing and the associated order in which accepted jobs should be sequenced to maximize the 

total profit realized by the facility. Problem formulations and dynamic programming algorithms 

are presented for both the special case in which all available work is from a single job class, and 

the more general case involving multiple job classes. The insight derived from these models 

concerning the operational implications of strategic decisions is illustrated through a series of 

example problems, first focusing on the coordination of marketing and manufacturing policy, 

and finally by considering important issues related to manufacturing focus. 

1. Introduction 

Many organizations have discovered the critical role that manufacturing plays in deter- 

mining the competitive position of the firm. In sharp contrast with the traditional view of 

manufacturing as a tactical, reactive, cost-minimizing function, effective design and manage- 

ment of the production system is now considered a sustainable source of competitive advantage 

(see, e.g., Skinner 1978, 1985, Hayes and Wheelwright 1984, and Hill 1989). 

In the past decade, the research literature has responded enthusiastically to the notion 

that manufacturing should be managed as a strategic asset. Most of this research effort has 

concentrated on defining the strategic dimensions of manufacturing, and developing the basic 

concepts that guide decision makers in formulating manufacturing strategy that is consistent 

with overall corporate strategy (see, e.g., the reviews of St. John 1986, Adam and Swamidass 

1989, and Anderson et al. 1989). Though the existing literature has clearly established the 

need to make operational trade-offs in strategic decision making (e.g., to emphasize one manu- 

facturing objective over others), and while some of the most powerful conceptual lessons from 

manufacturing strategy implicitly impose trade-offs (e.g., focusing a facility often forces hard 

choices between product line diversity and eflicient utilization of productive resources), strategy 

research has made little use of economic paradigms and operations research models to structure 
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and quantify these trade-offs. Reviews of models that detail the relationship between various 

strategic manufacturing decisions and the associated tactical challenges placed on operations 

are provided in Cohen and Lee (1985), Eliashberg and Steinberg (1991), and Fine (1993). 

The general types of operations research models used to link strategic and detailed de- 

cisions include (I) simple inventory models which capture setup cost, inventory holding cost, 

and pricing considerations (Porteus 1985 and DeGroote lQQl), (iq aggregate planning mod- 

els that account for the interaction between pricing and advertising decisions and short-term 

capacity strategies for accomodating varying demand (see, e.g., Welam 1977), (ii9 optimal 

control theoretic models of timing decisions concerning promotion, production, or new product 

development (Sogomonian and Tang 1990 and Cohen and Elisshberg 1991), and (iv) game the- 

oretic models that address coordination strategies and incentive schemes among marketing and 

manufacturing managers to improve overall profitability (see, e.g., Jorgensen 1986 and Porteus 

and Whang 1991). Notably absent from this list are any models linking strategic decisions that 

affect the character of work that ultimate!y must be processed by the marmfacturing system 

with detailed decisions that determine how this work should be scheduled. In the final analysis, 

it is at this most detailed, shop floor level that the implications of these strategic choices are 

most keenly felt. For example, the choice of processing technology affects manufacturing lead 

times, setup times, and total capacity; similarly, marketing decisions determine total product 

volume and mix, thus affecting the potential utilization of facility resources. Detailed models 

of the scheduling environment offer effective support for strategic decision making by allowing 

the operational implications of strategic choice to be explicitly and rigorously considered. 

The vast majority of research on sequencing and scheduling has assumed that the set of 

work that must be processed by a facility is given, and that objectives related to minimizing 

cost, maximizing throughput, or minimizing delay penalties incurred for late deliveries are 

sufficient for evaluating the quality of scheduling decisions (see Graves 1981, Blazewicz 1987, 

and Lawler et al. 1993). Typically, these studies provide algorithmic and/or heuristic solution 

procedures for determining the order in which work should be sequenced to meet the stated 

objective. Such an approach is entirely consistent with the reactive role commonly assumed by 

manufacturing in corporate strategy. 
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For manufacturing to be an equal partner in the formulation of corporate strategy, a new 

class of detailed models are needed to clearly communicate the impact of other functional poli- 

cies on the operation of the manufacturing system. Only then can firms overcome the tendency 

to impose production requirements on manufacturing systems that cannot be profitably met, 

and move toward policies where only the work that the current manufacturing infrastructure 

CM best support is accepted for processing. These models must reflect not only traditional 

manufacturing objectives, but also market related characteristics such as price and customer 

reaction to late deliveries. The models should include sufficient detail to accurately capture 

the operational trade-offs that are germane to the development of solid manufacturing strategy, 

while at the same time avoiding inessential complexity. 

In this paper, we present a scheduling model that accounts for the different processing 

time, delay penalty, and revenue characteristics associated with a set of jobs available for 

processing by a single facility. The set of jobs is partitioned according to job class such that 

if two jobs of different classes are processed in succession, a setup is incurred between the 

jobs. The objective is to simultaneously determine the subset of jobs to accept for processing, 

given job class dependent setup times and tight capacity constraints, and the associated order 

in which the accepted jobs should be sequenced to maximize the total profit realized by the 

facility. The problem is defined and formulated in Section 2 for both the special case where all 

available work is of a single job class, and the more general case involving multiple job classes. 

Dynamic programming solution approaches for the single and multiple job class scheduling 

problems are presented in Section 3. These algorithms provide valuable decision support by 

quantifying the impact on profitability of varying the operating environment (e.g., setup times, 

processing times, delay penalties, or sequencing rules) faced by the manufacturing system, and 

by structuring the operational trade-offs associated with specific marketing strategies (e.g., 

product focused policies targeting specific market segments or standardization/customization 

strategies). Example problems are provided in Section 4 to illustrate how the models can 

be used to address strategic issues affecting the marketing/manufacturing interface. Similar 

problems highlighting the operational impact of strategies concerning manufacturing focus are 

presented in Section 5. Section 6 concludes with a summary. 
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2. The Model 
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Consider a single facility capable of processing multiple batches of related jobs. Let 

M = {1,2, . . . . m} denote the set of job classes, and .7 = {l,Z,...,n} the set of available jobs. 

The job class of job j E J is represented by y(j), with i - j indicating that jobs i and j are of 

the same class, i.e., y(i) = y(j). Setup requirements for the facility are such that if two jobs of 

the same class are processed in succession, no setup is incurred between the jobs; conversely, a 

known setup time is required whenever two jobs of different types are processed consecutively. 

Thus, if hk represents the setup time incurred prior to the production of a batch of job class k, 

and job j is of type k (i.e., y(j) = k), then no setup time is incurred between the processing of 

consecutive jobs i and j when i - j, while hk units of setup time are required when i and j are 

of different job classes. This structure of setup times is a special case of sequence-dependent 

setups, where both preceding and succeeding jobs affect setup times. 

Associated with each job j E .7 is a processing time tj. For a given schedule, job j 

completes at time Cj, generating Rj (Cj) units of revenue. A revenue function that is decreasing 

in completion times is consistent with a time-competitive production environment; for modeling 

simplicity we hereafter assume the following linear form: 

Rj (Cj) = Ry - ajCj, (1) 

where ej denotes the rate at which revenue decreases as the completion time of job j is delayed. 

Rj(Cj) can also be interpreted as a profit function, with R; representing the price quoted to 

the customer demanding job j and ejCj the processing (e.g., inventory holding) cost of job 

j. If the total amount of available work exceeds the processing capacity of the facility over a 

finite planning horizon T, then both the subset of jobs in set J to accept for processing and 

the sequence in which the accepted jobs should be completed must be determined to maximize 

total profit, defined as total revenue net of delay penalties or manufacturing costs. 

Setup times that depend only on the job clsssee of successive jobs have been previously 

investigated in the scheduling literature (e.g., see the review of Webster and Baker 1995). Bruno 

and Downey (1978) consider a single-machine scheduling problem with deadlines and job type 
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dependent setups, with emphasis placed on determining if there exists a production schedule 

that meets all job due dates. The problem is shown to be NP-complete, and a pseudepolynomial 

solution approach (exponential in the number of distinct due dates) is provided. Monma and 

Potts (1989) present an alternative algorithm for the problem which is exponential in the 

number of distinct job classes. Bruno and Sethi (1978) address the single-machine problem 

with job type dependent setup times and a total weighted flow time scheduling criterion, and 

suggest a dynamic programming approach for the problem Monma and Potts (1989) also 

present a dynamic programming solution procedure for this problem that is polynomial in the 

number of jobs, but exponential in the number of job classes. An algorithm developed by Gupta 

(1984) constructs locally optimal schedules for the special case of this problem where there are 

only two job types. Gupta (1988) also describes a heuristic for the more general problem 

with an arbitrary number of job classes. Mason and Anderson (1991) present properties of the 

optimal solution for this problem, and suggest an efficient branch-and-bound solution approach. 

Scheduling problems with job type dependent setup times have also been studied in parallel 

processing environments (see, e.g., Wittrock 1986, Bitran and Gilbert 1990, and Tang 1990). 

Two key aspects of the problem considered in this paper distinguish it from the research 

described above. First, while previous models have assumed a given set of work that must be 

processed by the facility, we combine the selection of a subset of the available jobs with decisions 

concerning how the accepted work should be scheduled. In addition, we utilize a general profit 

maximization objective rather than the traditional flow time and tardiness-related criteria found 

in the literature. While jobs of the same class can conceivably be processed in more than one 

batch in the schedule that maximizes total profit, for simplicity we restrict attention to solutions 

in which accepted jobs of the same class are processed in single batches (see Webster and Baker 

1995 for a discussion of structural properties of the optimal schedule for a given set of jobs 

when batch splitting is allowed). 

Consider a special case of the problem in which all available work facing the facility is of 

a single job class k, i.e., J = Jh = {1,2, . . ..Q} and n = IJkI = nk. Associated with each job j is 

processing time tj, delay penalty ej, and revenue function Rj(Cj) given by (1). The objective is 
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to determine which jobs should be accepted for processing, and the sequence in which accepted 

jobs should be ordered, to maximize the profit realized by the facility. The following result 

allows the optimal sequence corresponding to a given set of accepted jobs to be immediately 

specified. 

Proposition 1. There exists an optimal schedule in which the set of accepted jobs of the same 

class are sequenced in nondecreasing order of the ratio tj/aj.,.i.c., if ti/q 2 tjjaj for accepted 

jobs i, j E Jk, then job i precedes job j in at least one optimal schedule. 

All proofs are provided in the Appendix. 

Proposition 1 is extremely useful in formulating the single job class problem with an 

objective of maximizing total profit. Suppose job class k commences processing at time Sk (for 

the case of a single job class, Sk represents the setup time for job class k; for the case of multiple 

job classes, Sk represents the total time allocated to job classes sequenced prior to k), and is 

allocated Tk time units of the facility’s capacity. For each j E Jk, let zj be defined as follows: 

1, if job j is accepted for processing 
Zj = 

0, otherwise. 

Without loss of generality, we can assume that the jobs in Jk are numbered in nonde- 

creasing order of the ratio t,/ej. The single job class problem (STP) can then be formulated 

as follows: 

St.. C tjzj I Tk 
iEJ& 

zj E {O,l} , j E Jt. 

(4 

(3) 

(4) 

Formulation (STP) can be easily linearized by defining decision variable r+j = Zizj. 
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s.t. (3), (4) and 
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(LSTP) 

Constraints (6) ensure that the values of variables zi, zjr and zij are consistent with the 

definition of Zij. Observe that variable Gj assumes a value of 1 if and only if zi = 1 and Zj = 1; 

otherwise, constraint (6) is redundant, and the form of the objective function guarantees that 

&j takes on its lowest possible value, Zij = 0. 

The complexity of problem (STP) is easily established by noting that the special case 

in which oj = 0 for all j E Jh is a knapsack problem (this structure is particularly clear in 

formulation (LSTP)), which is known to be NP-hard (Garey and Johnson 1979). However, the 

problem is efficiently solved for reasonably sized problems using dynamic programming (see 

Section 3.1). Though the mixed integer linear programming formulation (LSTP) suggests a 

Benders Decomposition approach (see Benders 1962), computational concerns, such as slow 

convergence and the requirement that problem (STP) b e repeatedly solved in the solution of 

the multiple job class problem, favored a dynamic programming approach. 

Building on problem (STP), we can formulate the multiple job class problem with an 

objective of maximizing total profit. Let: 

{ 

1, if job class k is the T ;* batch processed in sequence 
Yk = 

0, otherwise, 

and T,, the amount of time allocated to job class k when that batch is processed rth in sequence. 

Tk = 0 for r = 1,2, . . . . m indicates that no jobs of class k are accepted for processing in the 

facility. The multiple job class problem can be formulated as follows: 
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(8) 

s.t. Tdtr 5 T (9) 

-gY4, r=l,2,...,m (10) 

gY,=l, k=1,2,...,m (11) 

OFTh<T, k=l,2 ,..., m,r=1,2 ,..., m 02) 

YbE{O,l}, k=1,2 )...) m,r=1,2 ,...( m. (13) 

The objective (8) of problem (MTP) is to maximize total profit for the facility, where function 

F(-,.) is as defined for problem (STP). Constraint (9) guarantees that the amount of time 

allocated for processing job classes does not exceed the total capacity (T) of the facility, and 

constraints (10) and (11) ensure that each job class is assigned to exactly one position in the 

processing sequence. 

Problem (MTP) is clearly NP-hard, since the special case of a single job class, i.e., 

problem (STP), is NP-hard. In the next section, we present dynamic programming algorithms 

for obtaining solutions to problems (STP) and (MTP). 

3. Solution Approaches 

We first develop a dynamic programming algorithm for the single job class problem 

(STP) in Section 3.1. In the process, we characterize properties of the recursion which, based 

on a single execution of the algorithm, allow values of the function Fk(Sk,Tk) to be easily 

calculated for any combination of parameters Sk and T k. Capitalizing on these properties, we 

propose a computationally efficient dynamic programming algorithm for the multiple job class 

problem (MTP) in Section 3.2. 
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3.1. A Dynamic Programming Algorithm for Problem (STP) 

We again consider a single job class k and the set of jobs Jk = {1,2, . . . . no} corresponding 

to job class k. The objective is to determine which of the available jobs to accept for processing, 

and the order in which the accepted jobs should be sequenced to maximize total profit. 

Let Gf(Sh,p) denote the maximum profit earned by processing at most s jobs of type k 

(0 5 s 5 rz~), with the first job processed at time St, and a total of p time units allocated for 

processing job class k. We can write the following recursive relationship: 

Gt(&,p) E 0, for any 0 < p 5 Tk, 

Gf(Sk,p) = IIIIX {Gf-,(Sk,r) + RT - +(r +tj)} , for 1 I s 5 %,O 5 P I Tk. (14) 
‘:v+tiiY 

Expression (14) is a forward DP recursion that terminates after stage nr,, yielding: 

Since we assume that jobs of class k are numbered in nondecreasing order of the ratio tj/oj, the 

optimal sequence ur(Sk,Tk) consists of the set of accepted jobs obtained from (14) arranged in 

numerical order. 

While the number of stages in the recursion represented by expression (14) is finite and 

equal to the number of jobs in Jk, the associated state space is potentially infinite. However, 

we show below that only a finite number of discrete values of the state variable /J need to be 

considered in determining the optimal schedule. For any subset Q, c Jk such that IQ,1 = s, let 

po. refer to the sum of the processing times for those jobs contained in Q,, or: 

PO. = C tj. 
W?. 

(16) 

Taken over all possible subsets of Q, c Jk containing exactly s jobs, we obtain the set of 

processing time sums for subsets of size s, denoted PS-s. The following result indicates that 
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the state space associated with function Gf(Sb,p) is made up of the processing time sums 

contained in sets PS-s,PS-(s - l),...,PS-(1). 

Proposition 2. Gt(&,p) is a piecewise constant function, nondecreasing in p and right-hand 

continuous, with breakpoint values of JL contained in the set of processing time sums for subsets 

of at most size s. 

According to Proposition 2, at stage s of the dynamic programming recursion the state 

space consists of at most 2 ;” 
0 

possible values for the state variable /.L. Thus, for a given 
&I 

value of Sk, at most 2”’ distinct subsets of the rat jobs must be evaluated to determine the 

optimal policy. 

The example contained in Table 1, which depicts a single class of jobs available for 

processing, illustrates the solution process by providing profit calculations (assuming no setup 

time for the job class) for all possible subsets of the four jobs. A graph of the maximum 

associated profit as a function of the total amount of capacity allocated to job class k at time 

0 is shown in Figure 1. Observe in Table 1 that the profit associated with any subset Q. can 

alternatively be obtained from the profit of some subset Q,-1. Similarly, the impact of delaying 

the processing of any subset by Sk time units can be directly evaluated from its base profit, i.e., 

the profit when Sk = 0. For example, the base profits of subsets (1,3} and {2,4) are given in 

Table 1 as 61.2 and 61.0, respectively; therefore, if job class k commences processing at time 0 

and a total of 6 units of capacity are available, jobs 1 and 3 should be accepted and processed 

in numerical order. However, delaying the processing of job class k by Sk time units decreases 

the profitability of any subset Q, by an amount equal to Sk c oj; hence, if Sk = 3 the profits 

of subsets {1,3} and {2,4} are 61.2-0.8(3) = 58.8 and 61.0-0.7(3) = 58.9, respectively. Thus, 

subset {2,4} now yields a higher profit. In general, both the base profit of a subset (i.e., the 

profit at Sk = 0) and the rate at which that profit decreases as a function of processing delays 

(as captured by the quantity Sk c ,) 0. must be considered in determining the optimal policy 
SO. 

for accepting and scheduling jobs. This observation significantly speeds profit calculations, thus 

contributing to computational efficiency when problem (STP) must be repeatedly solved over 
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a range of values for Sk, as in the solution procedure for problem (MTP) described in Section 

3.2. 

Figure 1: Maximum Profit for Various Levels of Capacity 
(Single Job Class Example) 

I 
I 

40 / 
I 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

Total Capacity 
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Job(j) tj aj R: 2 

1 1 0.2 10 5.00 
2 2 0.3 20 6.67 
3 5 0.6 55 8.33 
4 4 0.4 44 10.00 

Sequence P=Ctj Profit Calculation Alternative Profit Calculation 

jeQ. 

2 
3 

4 

1-2 

1-3 

1-4 

2-3 

2-4 

3-4 

l-2-3 

l-2-4 

l-3-4 

2-3-4 

l-2-3-4 

10 

11 

12 

IO - .2(l) = 9.8’ 

20 - .3(2) = 19.4’ 
55 - .6(S) = 52.0’ 

44 - .4(4) = 42.4’ 

30 - .2(l) - .3(3) = 28.9’ 

65 - .2(l) - .6(6) = 61.2’ 

54 - .2( 1) - .4(S) = 51.8 

75 - .3(2) - .6(7) = 70.2’ 

64 - .3(2) - .4(6) = 61.0 

99 - .6(S) - .4(9) = 92.4’ 

8.5 -.2(l) - .3(3) - .6(S) = 79.1’ 

74 -.2(l) - .3(3) - .4(7) = 70.1 

109 - .2(l) - .6(6) - .4(10) = 101.2’ 

119 - .3(2) - .6(7) - .4(11) = 109.8’ 

129 - .2(l) - .3(3) - .6(8) - .4(12) = 118.3’ 

Gf(O, 1) + 20 - .3(3) = 28.9 

G:(O, I) t 5.5 - .6(6) = 61.2 

Gf(O, 1) + 44 - .4(5) = 51.8 

G:(O, 2) + 55 - .6(7) = 70.2 

Gf(O,2) + 44 - .4(6) = 61.0 

G$(O, 5) + 44 - .4(9) = 92.4 

G;(0,3) + 55 - d(8) = 79.1 

G;(O, 3) + 44 - .4(7) = 70.1 

G;(O,6) + 44 - .4(10) = 101.2 

Gi(O.7) + 44 - .4(U) = 109.8 

G;(O,8) + 44 - .4(12) = 118.3 

* Optimal profit associated with breakpoint value of cc. 

Let B,’ represent the set of breakpoint values of p associated with the function G:(S~,/I), 

with 0 5 /A 5 Th. The following results are useful in reducing the number of subsets requiring 

explicit evaluation in the search for the optimal single job class schedule. 

Lemma 1. For 2 5 s 5 nk, B: C P, = (p, : pr = pc + tj,pc E B:-r, j E Jk, and p, 5 Tk}. 

Lemma 2. If Gf+,(Sk,Tk) = Gf(Sk,Tk) f or some 1 5 s 5 nt - 1 and Bf+, contains only 

processing time sums of at most size J, then Fk(Sk,Tk) = Gf(Sb, Tt). 
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Lemma 1 indicates that in determining the set of processing time sums that must be con- 

sidered at stage s + 1 of the solution process, attention can be confined to direct augmentations 

of the set of breakpoint values of g associated with the immediately previous stage. Lemma 2 

provides a test for terminating the dynamic programming procedure prior to stage nL. These 

results are instrumental in achieving high computational efficiency in the implementation of 

the (STP) solution procedure. Our computational experience with the algorithm indicates that 

single job class problems involving 10 jobs can be solved in approximately 0.5 CPU seconds on 

an IBM 4381. 

3.2. A Dynamic Programming Algorithm for Problem (MTP) 

We now consider the situation where the set of available work consists of m different 

types of jobs. We assume that the optimal profit Fk(Sk,Z’k) and associated optimal sequence of 

accepted jobs q(Sk, Z’t) can be readily obtained for any combination of St and Tk by solving 

the single job class problem for each job type k. According to Proposition 1, we may also 

assume that jobs of a given job class are numbered in nondecreasing order of the ratio tj/aj. 

Let Vr(L, t) denote the maximum profit earned if at most q types of jobs from the set 

L C M are processed for a total of t time units starting at time 0. Recall that hb represents 

the setup time incurred prior to the production of a batch of job class k. We can then write 

the following recursive relationship for 0 5 t 5 T and L c M: 

Vl(L,t) = yg{Fk(O,t)} , for L # 0, 

V,(-ht) = 22 {V,-l(L\{k},r) + 4(r + hh,t - r - hi)} , for IL1 1 q. (17) 
‘+*,+“.,~,,c*),s1 

Expression (17) is also a forward DP recursion that terminates after stage m, yielding: 

f(M,T) = Vm(M,T). (18) 

Again observe that while the state space of the recursion represented by expression (17) 

is infinite, only a finite number of states need to be considered in determining the value f(M, T). 

In support of this conclusion, note that at every stage the only sets L that must be considered 
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are M and M\(k). Let B’(f) represent the set of breakpoint values oft of the piecewise constant 

function f over its domain. For notational consistency, we require B’ (Gf(&,p)) 5 Bf. The 

finiteness of the state space is established by the following result. 

Lemma 3. B’(V,(L,t)) C U B’(Fk(O,t)). 
&EL 

To illustrate the solution process for problems involving multiple job classes, consider 

the a-job type example presented in Table 2. We assume for simplicity that no setup time is 

required for either job class, i.e., hr = hr = 0, and that the total amount of available capacity 

is 9 time units. The dynamic programming algorithm first determines the policy yielding the 

maximum profit for a given level of capacity by assuming that only jobs from a single job class 

are accepted for processing. Figure 2 indicates that the optimal profit Vl( { 1,2}, t) is determined 

for 0 5 t 5 T by comparing the optimal profits Fr(0, t) and Fr(O,t) for each job class considered 

individually. Thus, Figure 2 shows that a policy that accepts and processes only jobs of type 1 

yields maximum profits for t < 3 and t 2 9, and that a schedule constructed from only jobs of 

type 2 is optimal for 3 5 t < 9. 

Policies in which jobs from both classes are accepted and processed must next be con- 

sidered. Assuming first that jobs of class 1 will be processed first, the amount of time allocated 

to the production of class 1 can be varied over the feasible range, with the remainder of the 

availabie capacity dedicated to the production of jobs of type 2, as illustrated at the bottom of 

Table 2. Also shown are the profit implications of producing class 2 jobs first in sequence over 

all feasible allocations of capacity. We conclude from the results in Table 2 that scheduling job 

3 of type 1 first, followed by job 3 of type 2, yields maximum profit 102.4. 

Similar problems involving multiple jobs from several job classes can be efficiently solved 

using the (MTP) model. Our computational experience indicates that problems made up of as 

many as 5 job classes, 10 jobs per class, can be solved in approximately 60 CPU seconds on an 

IBM 4381. 
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Figure 2: Maximum Profit for Various Levels of Capacity 
(Two Job Class Example) 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

Total Capacity 

-Job Class 1 - l - JobClass 2 
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Table 2: Two Job Class Example 

Job Class 1 Job Class 2 

Job(j) tj aj Rj” ~ Job(j) tj Uj R; z 

1 1 0.2 10 5.00 1 1 0.3 10 3.33 
2 2 0.3 20 6.67 2 3 0.4 33 7.50 
3 5 0.6 55 8.33 3 4 0.4 54 10.00 
4 4 0.4 44 10.00 

Sequence of Job Classes = 1-2 

Capacity Allocated Job Class 1 Capacity Allocated Job Class 2 Total 
to Job Class 1 Profit Job Class 2 Profit Proh 

a 

9.8 a 90.7 loo.5 
19.4 7 al.4 loo.8 
28.9 6 59.6 88.5 
42.4 5 58.9 101.3 
52.0 4 50.4 102.4 
61.2 3 29.4 90.6 
70.2 2 7.6 77.8 
79.1 1 7.3 86.4 

Sequence of Job Classes = 2-l 

Capscity Allocated Job Class 2 Capacity Allocated Job Class 1 Total 
to Job Class 2 Profit Job Class 1 Profit Profit 

9.7 
31.8 
52.4 
61.7 
83.0 
91.9 

78.0 
58.9 
49.6 
40.4 
17.3 
a.2 

87.7 
90.7 
102.0 
102.1 
loo.3 
loo.1 



272 RICHARD L. DANIEL.? ET AL. 

4. MarketlngjManukcturing Interface Issues 

In attempting to maximize the local performance of their individual functions, marketing 

and manufacturing domains within the firm often fail to optimize overall system performance 

(see, e.g., Shapiro 1977, Montgomery and Hausman 1986, Karmarkar and Lele 1989 and Eliash- 

berg and Steinberg 1991 for extensive discussion on sources of conflict between marketing and 

manufacturing). Recent research has yielded formal models that capture important elements 

of the marketing/manufacturing interface, explain where and why conflicts between these two 

functional areas arise, and suggest how coordinating policies that are beneficial to the firm 

as a whole can be developed and implemented (see, e.g., the review paper of Elisshberg and 

Steinberg 1991). In this section, we discuss how a model for accepting and scheduling jobs 

from multiple classes can be used both as a conceptual tool for demonstrating to functional 

managers the suboptimality of functionally driven performance measures, and as an analysis 

tool for focusing the cross-functional coordination efforts of managers. 

We first emphasize the suboptimality of functionally-driven performance measures in our 

modeling environment. Consider the example presented in Table 3, where six jobs of a single 

class k are available for processing by a facility with finite capacity 7’ = 20. Assume no setup 

time for class k, i.e., hk = 0. 

Job(j) tj Oj 
RO-a,:, 
- tj X aj 

t, 

1 11 2.0 66 5.5 4.00 22.0 
2 9 1.5 48 6.0 3.83 12.5 
3 3 0.4 12 7.5 3.60 1.2 
4 4 0.5 17 8.0 3.75 2.0 
5 7 0.7 30 10.0 3.59 4.9 
6 6 0.3 24 20.0 3.70 1.8 

Table 3 
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A marketing perspective focuses on the revenue implications of accepting individual jobs 

while ignoring detailed operational constraints such ss setup times, job-specific delay penalties, 

Ro-a,:, and capacity limitations. A quantity that supports a revenue maximization objective is L,, 

calculated for each job in Table 3, which indicates the revenue (net of the minimum cost that 

must be incurred if job j is processed immediately) per unit of consumed capacity generated 

by including job j in the portfolio of accepted work. Using thii ratio as a greedy measure for 

accepting jobs for processing results in the selection of jobs 1 and 2 which, when processed in 

numerical order, yield a total profit of: 

Profit = (66 i- 48) - 2.0(11) - 1.5(20) = 62. 

From a traditional operations perspective, minimizing manufacturing costs while effi- 

ciently utilizing available capacity is of primary importance. Quantities that support a cost 

minimization objective are the ratio tj/sj, which is the inverse of the cost per unit of consumed 

capacity, and the product tj x aj, the minimum cost that must be incurred if job j is processed 

immediately. Each of these quantities is also calculated for each job in Table 3. Using either 

measure in a greedy procedure for accepting jobs results in selection of jobs 3,4,5, and 6 which, 

when optimally sequenced, yield a total profit of: 

Profit = (12 + 17 + 30 + 24) - 0.4(3) - 0.5(7) - 0.7(14) - 0.3(20) = 62.5. 

The formulation of problem (STP) f ocuses simultaneously on revenue and cost concerns, 

while accounting for sequencing and capacity restrictions. The dynamic programming algorithm 

for problem (STP) accepts jobs 1, 3, and 6, which implies a total profit of: 

Profit = (66 + 12 + 24) - 2.0(11) - 0.4(14) - 0.3(20) = 68.4, 

or roughly a 10% improvement over the solutions generated by the individual functional areas. 

Note that this simple example does not penalize the functionally motivated heuristics for either 

capacity underutilization (all solutions fully consume available capacity) or setup delays (the 
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example assumes a single job class and no setup times). To illustrate how both of these elements 

can affect the performance of the greedy heuristics, consider a slight variation on the example 

presented in Table 3. Suppose now that jobs 1, 3, and 6 belong to job class 1 and jobs 2, 4, 

and 5 to job class 2, and that a setup time of 1 time unit is incurred each time production is 

switched from one job type to another, i.c, hr = h2 = 1. The capacity of the facility remains 

T = 20. Using revenue per unit of consumed capacity to evaluate and select individual jobs and 

ignoring setup and capacity restrictions, the marketing heuristic again attempts to accept jobs 

1 and 2, whose setup and processing requirements exceed available capacity by 2 time units. 

Thus, either an alternative source of processing capacity (e.g., overtime or subcontracting) must 

be utilized, or one of jobs 1 and 2 must be rejected and replaced by other available work (a 

pure greedy approach would reject job 2 and ultimately accept jobs 3 and 4, for a total profit 

of 55). The manufacturing heuristic again attempts to accept jobs 3 through 6, violating the 

capacity of the facility by at least 2 time units. If alternative capacity cannot be acquired, one 

or more of these jobs must be rejected (a pure greedy approach would reject job 5, yielding a 

total profit of 42.4). The optimal solution is to accept and process in numerical order jobs 1 

and 6, resulting in the maximum profit of 60.6. 

These examples highlight the impact of exclusive focus on functional performance, and 

provide insight on how detailed operational models can be used to rationalize and communi- 

cate when and why the interests of each functional area must be compromised to benefit the 

firm as a whole. To illustrate how our scheduling model can be used to coordinate market- 

ing/manufacturing policies, consider again the 6job example given in Table 3, and assume that 

jobs 1, 3, and 6 belong to job class 1 and jobs 2, 4, and 5 to job class 2 (for simplicity, we as- 

sume no setup time for either job class). We adopt the following interpretation for the revenue 

function Rj(Cj) given in (1): let q represent the price quoted to a customer for job j (assume 

that the marketing area makes this pricing decision), and ujCj reflects the cost of holding job 

j until its completion at time Cj (this cost is clearly affected by decisions concerning which 

jobs to accept and how accepted work is scheduled). For the problem instance given in Table 

3, the optimal solution is to accept only jobs of class 1, specifically jobs 1, 3, and 6. If the 



PROFIT MAXIMIZING SCHEDULING MODELS 275 

mix of jobs in this example are representative of the demands typically faced by the firm, then 

such a solution could have long run marketing implications, since consistent rejection of type 2 

jobs sends a strong signal to the market about the firm’s processing capabilities. A potentially 

relevant long-term concern for a firm in this position is to determine appropriate marketing 

and manufacturing actions to ensure that a mix of jobs from both job classes may be profitably 

processed by the facility. 

The marketing function, with its pricing authority and market information, may find the 

detailed scheduling model (MTP) useful in exploring the sensitivity of job acceptance decisions 

to alternative pricing policies. Table 4 illustrates the effect of price changes for jobs 1 and 2 

on the optimal set of accepted jobs. Similar tables can be generated for other combinations of 

jobs. 

Ry R; 

66 48 

66 49-53 
66 54 

67 54 
67 55 

68 55 

Table 4 

Job Types Optimal 
Accepted Sequence 

1 l-3-6 
1 l-3-6 

1 and 2 2-4-6 
1 l-3-6 

1 and 2 2-4-6 

1 and 2 l-2 

Maximum 
Profit 

68.4 

68.4 
69.3 

69.4 
70.3 

71.0 

Table 4 indicates that, all else remaining equal, the price of job 2 must be increased substantially 

for the firm to profitably include it in its portfolio of accepted work. Table 4 also emphasizes 

how sensitive the processing mix is to the relative price of available jobs. Finally, in order for 

the marketing heuristic of selecting jobs for processing according to their revenue per unit of 

consumed capacity to correspond to the optimal solution, the prices of both jobs 1 and 2 must 

be increased from their current level. 

The manufacturing function, with its control over cost reduction alternatives for the 

facility, can employ the detailed scheduling model to explore how changes in the parameter ej 
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can profitably move the firm towards an operating mix that includes both job classes. Table 5 

illustrates the effect of cost changes for jobs 1 and 2 on the optimal set of accepted jobs. 

Table 5 

a2 

Job Types Optimal Maximum 
Accepted Sequence Profit 

2.0 1.9 1 l-3-6 68.4 
1.9 1.5 1 l-3-6 69.5 
2.0 1.2-1.4 1 l-3-6 69:5 
2.0 1.1 land2 l-2 70.0 

Table 5 clearly indicates that in order to achieve the desired operating mix, cost reduction 

efforts must be centered on job 2. 

These simple examples illustrate the value of a detailed model in structuring cross- 

functional debate, and in developing integrated functional policies for meeting the objectives of 

the entire firm. 

5. Manufacturing Focus 

The manufacturing strategy literature has consistently stressed the importance of man- 

ufacturing focus, i.e., dedicated effort towards achieving outstanding operational performance 

along a narrowly defined set of measures, as a means of establishing a firm’s operations as 

a sustainable competitive asset (see, e.g., Skinner 1969, 1974, Hayes and Wheelwright 1984, 

and Hill 1989). While the conceptual importance of manufacturing focus is clear, operations 

managers must realize that focusing an actual facility implies operational trade-offs that should 

be quantified and structured as much as possible before such a policy is implemented. In par- 

ticular, issues concerning how certain elements of the specific operational environment (e.g., 

product volumes, product mix, setup times, and system capacity) affect the type of focusing 

strategy that can be profitably applied to a given facility must be carefully considered. Con- 

ceptual manufacturing strategy models (see, e.g., Skinner 1974, Hill and Duke-Wooley 1983, 

Hill 1989, and Berry et al. 1991) fail to address such detailed questions. Detailed models, such 



PROFIT MAXIMIZING SCHEDULING MODELS 277 

as the scheduling models presented in this paper, provide valuable insight into how the concept 

of manufacturing focus can be operationalized for a specific setting, and how the associated op- 

erational trade-offs can be structured and quantified ag an aid for managerial decision making. 

The importance of operational mode1 building for addressing issues concerning manufacturing 

focus is illustrated by the examples presented in this section. 

First consider a manufacturing environment that might reasonably adopt a product 

focused strategy, i.e., a conscious policy of accepting and producing only a single type of 

job. The example presented in Table 6 involves 3 job classes. Job class 1 is characteristic 

of a high-volume, standardized good that enjoys relatively large demand (both in terms of 

the number of available jobs and total processing time), but low profit per unit of consumed 

capacity. Job classes 2 and 3 represent low-volume, customized products characterized by 

relatively low demand and high unit profits. Suppose that a constant setup time of h time 

units is incurred each time the facility changes over from the production of one job class to 

another (i.e., hr = hz = h3 = h), and that the total amount of capacity available to the facility 

is 28 time units. 

Table 0 

Job Class 1 Job Class 2 

Jobs(j) t; ej I?: 

1 7 1.50 60 
2 2 0.40 20 
3 6 0.80 50 
4 3 0.30 55 
5 9 0.50 80 

Jobs(j) t, ej R! 

1 5 1.60 65 
2 1 0.15 30 
3 8 0.20 70 

Job Class 3 

1 4 0.70 45 
2 10 0.60 loo 

For the operational environment described by the data in Table 6, we can use the (STP) 

and (MTP) models to determine how the profitability of a focused strategy (centered on either 
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high volume/low profit or low volume/high profit job classes) is affected by environmental 

factors such as setup times. Given setup time h, the (STP) model is applied to job class 1 to 

obtain the optimal solution for a strategy targeting the standardized product. Similarly, the 

(MTP) mode1 is applied to job classes 2 and 3 to determine the optima1 solution when only the 

set of customized jobs is considered. Finally, the (MTP) mode1 is used to solve the 3-job type 

problem to obtain the best unfocused policy. The results for a wide range of setup times are 

graphically depicted in Figure 3. 

Figure 3 shows that a focused policy is optimal only for relatively high levels of setup 

time (h 1 6, or 21% of total capacity). We note that the optima1 unfocused solution accepts 

jobs from all three classes over the range of setup times considered. Interestingly, a specific job 

j can appear attractive for such a strategy because of a low processing time (tj), a small delay 

penalty (ej), a high initial revenue (Rio), or a processing time or job type that fits well with the 

portfolio of accepted jobs given setup times and a tight capacity constraint. 

Over the setup time range 6 5 h 5 27, Figure 3 shows that a focused policy yields 

the optima1 profit. Over most of this range, a strategy targeting the high volume/low profit 

standardized product is favored. However, a policy focused on low volume/high profit cus- 

tomized job types 2 and 3 is dominant for 17 5 h 5 20. The insight derived from the detailed 

model, i.e., what setup time levels favor manufacturing focus and when specifically should at- 

tention be confined to the set of standardized vs. customized products, is virtually impossible 

to obtain using standard conceptual arguments from the manufacturing strategy literature. A 

simple graph like Figure 3 can also be used to determine how efforts to reduce setups support 

a marketing strategy targeting specific market segments, or to assess whether an alternative 

processing technology allows the firm to compete in new markets. 

The recent manufacturing strategy literature has presented several examples of firms 

that have shifted their strategic emphasis from cost minimization of products targeted for price 

sensitive markets, to lead time minimization targeted for customers whose demands must be 

met as quickly as possible (see, e.g., Stalk 1988, Stalk and Hout 1990, Blackburn 1991, and 

Lindsley et al. 1991). This strategic shift provides new opportunities for focusing on market 
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Figure 3: Profits for Different Focusing Policies 
Over Various Setup Times 
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segments characterized by higher unit profits, but also higher penalties for delivery delays. 

Conceptual strategy models address the general issues relating manufacturing focus and time- 

based competition; however, detailed modeIs are required to explicitly structure the relevant 
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operational trade-offs, and provide valuable insight into how environmental factors, such as the 

price premium associated with time competitive products, affect the profitability of focused 

and unfocused policies. 

Consider the single job class, lo-job example presented in Table 7. The set of available 

work consists of two sets of jobs that have identical processing time requirements, but different 

delay penalties, reflecting demands placed on the facility from both price sensitive and time 

competitive market segments. Jobs accepted from customers preferring short lead times are 

charged a premium z over the price of a similar job from the price sensitive market. We are 

interested in exploring the relationship between the premium z and the profitability of strategies 

focused respectively on price sensitive and time competitive jobs. Assume that there is no setup 

time, and that the total amount of capacity available to the facility is 25 time units. 

Table 7 

Jobs(j) tj oj R,” 

1 1 0.1 10 

2 3 0.1 30 

3 4 0.1 40 

4 7 0.1 70 

5 10 0.1 loo 

6 1 0.5 102 
7 3 0.5 302 
8 4 0.5 402 
9 7 0.5 702 

10 10 0.5 1002 

The (STP) model is applied to jobs 1-5 to determine the optimal schedule when only jobs 

from the price sensitive market segment are considered for acceptance. Given price premium 

z, the (STP) model is also applied to jobs 6-10 to obtain the optimal solution for a strategy 

focused soley on jobs from the time competitive market segment. Finally, the best unfocused 

policy is identified by using model (STP) to solve the entire l&job problem. The results for 

various levels of the price premium z are presented in Figure 4. 



PROFIT MAXIMIZING SCHEDULING MODELS 281 

Figure 4: Time Competition and Price Sensitive Policies 
for Various Price Premiums 
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When the price premium z is low (z 5 1.0375), f ocusing on price sensitive jobs yields 

optimal profits that are substantially higher than those obtained from a strategy that accepts 

only time competitive jobs. For higher levels of z (z 2 1.15), a policy targeting only time 

competitive jobs is optimal, dominating a price focused strategy by a large and increasing 

amount. Between these two extremes (1.0375 5 z 5 1.15), an unfocused policy that accepts 

both price sensitive and time competitive jobs yields a higher profit than either of the focused 

alternatives. Detailed analysis such as the above allows specific operational policies to be 

evaluated in the context of the range of marketing strategies that may be followed concurrently. 

In many operational environments, the interactions among factors such as the volume 

of work available from each job class, job processing times, delay penalties, and initial rev- 

enues both within and across job classes complicate the problem of determining an appropriate 

focused strategy, further justifying the use of detailed operational models to enhance manage- 

rial understanding of the capabilities of the production system. To demonstrate this benefit, 

consider the example problem involving 4 job classes shown in Table 8. 

Table 8 

Job Class 1 Job Class 2 

Jobs(j) tj sj RF Jobs(j) tj ej Ry 

1 1 0.5 10 
2 3 1.0 30 
3 2 0.4 20 
4 4 0.6 40 
5 5 0.7 50 
6 7 0.5 65 
7 8 0.4 70 
8 6 0.2 55 
9 10 0.3 85 

10 9 0.1 80 

1 3 1.0 302 
2 2 0.4 202 
3 7 0.5 652 
4 10 0.3 852 

Job Class 3 

1 1 0.5 1oz 
2 8 0.4 702 
3 9 0.1 802 

Job Class 4 

1 4 0.6 402 
2 5 0.7 502 
3 6 0.2 552 
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Job class 1 represents a set of standardiied products that display a wide variety of 

processing time, delay penalty, and revenue characteristics. Job classes 2-4 represent the cus- 

tomized versions of the products in job class 1; observe also that each customized job realizes 

a price premium of z over its standardized counterpart. Assume that a constant setup time 

is incurred each time the facility changes over from the production of one job class to another 

(CC., hr = hz = hs = h, = h). We consider two strategic options. A strategy focused on 

the standardized products limits the firm to accepting jobs of type 1. We evaluate this option 

by applying model (STP) to the jobs in class 1. Alternatively, the firm can follow a focused 

strategy targeting the set of customized products, thus realizing potentially higher profit mar- 

gins, but at an operational expense of setup downtime that results from processing multiple job 

classes. This option is evaluated by applying model (MTP) to the jobs in classes 2-4. Models 

(STP) and (MTP) thus allow the effectiveness of the two strategies to be determined as several 

key factors affecting the operational environment (setup times, capacity, and price premiums) 

are varied. The results are summarized in Figure 5 for a facility with 40 time units of capacity, 

and in Figures 60 and 66 for lower capacity levels. 

The results in Figure 5 indicate that when the price premium realized for customization 

is low, a strategy focused on the set of standardized products yields higher profits over the entire 

range of setup times considered. As the price premium is increased, the customization strategy 

becomes dominant over a small range of low setup times, since at these levels the higher unit 

profitability of jobs compensates for the lost capacity that results from increasing the number 

of setups through customization. Interestingly, very high setup time levels, especially when the 

price premium is also high, also favor a strategy focused on the customized products. This 

observation stems from the ability of a customization policy to reduce when necessary the 

required number of expensive setups by only accepting jobs from the most profitable segments 

of the customized market (in this example, jobs from only 1 of the 3 customized job classes are 

processed when h 2 11). 



284 lW3fARD L. DANIELS ET Al 

Figure 5: Profits for Standardization and 
Customization Strategies (Capacity = 40) 
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Figures 6a and 66 illustrate for this example the impact of decreasing the amount of avail- 

able capacity on the effectiveness of the standardization and customization strategies. Tighter 

capacity again favors the customization strategy, due to its ability to focus on the most prof- 

Figure 6a: Profits for Standardization and 
Customization Strategies (Capacity = 20) 
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Figure 6b: Profits for Standardization and 
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itable segments of the market while maintaining a minimum number of setups. Counter to 

conventional intuition, which argues that an increase in capacity should favor a customized 

strategy (since a greater number of setups for customized products can be accomodated), a 



PROFIT MAXlMZNG SCHEDULE-4G MODELS 287 

comparison of Figures 5, 6a and 66 clearly indicates that capacity expansion options must be 

evaluated in conjunction with policies for determining the associated levels of setup times and 

price premiums before concluding that a standardization us. customization policy should be 

followed. 

From an analysis such as that presented in Figure 5, 6~2, and 6b, a firm can evaluate the 

effectiveness of standardization and customization strategies given current characteristics of the 

operating environment (e.g., setup times, capacity, and price premiums), and determine what 

manufacturing efforts (e.g., setup time reduction, alternative sources of capacity) and pricing 

policies should be followed to profitably move the firm in the desired direction. 

6. Conclusions 

This paper has considered operating environments in which jobs with varying processing 

time, delay penalty, and revenue characteristics compete for processing by a single facility. 

Jobs were partitioned into multiple job classes such that a setup is required whenever jobs from 

different classes are processed in succession. Given limited processing capacity, the objective 

was to determine the subset of jobs to accept for processing and the associated order in which 

the accepted jobs should be sequenced to maximize the total profit realized by the facility. 

Problem formulations and dynamic programming solution approaches were presented for both 

the special caSe where all available work is from a single job class, and the more general case 

involving multiple job classes. A series of example problems were presented to illustrate how 

these detailed models could be used to structure and evaluate the operational trade-offs that 

result from strategic decision making, first focusing on the need to coordinate marketing and 

manufacturing policies, and finally by considering important issues related to manufacturing 

focus. 

The models presented in this paper reinforce the major role that manufacturing should 

play in the formulation of corporate strategy. By providing an important link between functional 

policy decisions and manufacturing performance, detailed models of the operational environ- 

ment clearly communicate how strategic decisions can either accent or ignore the strengths of 
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the manufacturing system. More effective manufacturing management can also result from the 

explicit recognition of a corporate-wide objective such as maximizing total profit. Future re- 

search should further emphasize the importance of detailed models as a means for determining 

and highlighting the operational impact of strategic decisions. 
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Appendix 

Proof of Proposition 1. Observe that for any set of accepted jobs A c Jk and for any 
schedule S: 

(Pl - 1) 

where the Cj are determined by schedule S. Since c Ry is constant for a given set A, profit 
j&4 

is maximized by minimizing 1 ajCj, which is accomplished by sequencing the jobs in A in 
j&4 

nondecreasing order of the quantity tj/aj (see, Smith 1956). g 

Proof of Proposition 2. Consider two consecutive breakpoints pI and pr as specified in 
the statement of the proposition. For any pr 5 p 5 pr, if there exists a sequence oh(S~,p) 
such that Gf(S+.,p) > Gf(S,,p,), then the subset of jobs Q appearing in uk(Sk,p) should be 

such that po = &otj < ~1. However, this implies that Gt(Sk,pr) 2 Gf(Sk,p), which is 

a contradiction. Thus, Gt(Sk,p) 5 Gf(Sk,pr), and since sequence ut(Sk,/.~r) is feasible for 

P 2 PI, Gf(&,lr) = G!(&PI) for my ~1 5 P < PZ. 

Observe also that if @r and fir are such that Gt(&,pr) > G:(&,pr), then Gf(Sk,p) < 
Gi(Sk,p2) for any pr 5 p < pr, which implies a discontinuity from the left a~ !J -+ PZ. 

However, if ps is the breakpoint immediately larger than ,ur, then Gi(Sk, p’) = G~(SL,/Q) 
for any p2 5 p’ < /us, thus establishing right hand continuity. I 

Proof of Lemmas 1-3. The details are omitted, since the results follow directly from 
Proposition 2, the definition of Bf, and the recursive relationships (14) (for Lemmas 1 and 
2) and (17) (for Lemma 3). g 
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